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Abstract. We show how non-periodic (quasiperiodic) long-range order can arise in one
dimension due to long-range, translation-invariant pair interactions with quasiperiodically
alternating signs. We discuss the Parisi overlap distribution between the infinitely many pure
states.

1. Introduction

Since the discovery of quasicrystals [27], the description of systems which are ordered in a
non-periodic manner, either quasiperiodically or even more irregularly, has been a topic of
considerable interest and physical relevance, see for example [12, 11, 18, 26] and references
therein. Moreover, the study of such irregular types of long-range order may be of use in
understanding some conceptual aspects of the spin-glass problem.

One question of interest is to show the possibility that such a non-periodic long-range
order arises for spin models with translation-invariant interactions, in which the spins can
take a finite number of values. At zero temperature this has been achieved for models of
spatial dimension at least 2, mostly on a lattice, with nearest-neighbour interactions, based
on the theory of non-periodic tilings. In one-dimensional models, one needs infinite-range
interactions [23], which, however, can decay arbitrarily quickly and can be chosen to be
of finite-body type [9]. At positive temperatures there have up to now been only limited
results. To obtain any type of long-range order in one dimension, the interactions are
necessarily of infinite range, and, moreover, they have to decay rather slowly. In [6] it
was shown that for some long-range four-body interaction, of a rather artificial form, long-
range order of Thue–Morse type can occur. A related argument for pair interactions with
huge gaps (that is, couplings are non-zero only for pairs of spins at exceptional distances
from each other) was also indicated. Here we use similar ideas to show the possibility of
a quasiperiodic long-range order occurring for a translation-invariant pair interaction of
alternating sign, in such a way that the sign of the correlation function essentially follows
the sign of the interaction. In fact, our argument is in some sense inverted, in that the sign
of the sought-after interaction follows the sign of some quasiperiodic correlation function.

Long-range translation-invariant pair interactions with alternating sign are physically
much more realistic than the interactions considered in [6]. One of the best-known examples
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is the RKKY interaction, which plays an important role in the modelling of spin-glasses.
For a recent review on results for long-range interactions we refer the reader to [28]. We
remark that a system with non-periodic long-range order has infinitely many pure states,
a property which is often suggested as being characteristic for spin-glasses. (For a further
discussion about analogies between non-periodic systems and spin-glasses, we refer the
reader to [5, 7, 28].) The main difference seems to be the absence of disorder; however,
there have also been attempts to describe spin-glass behaviour with non-random models
[4, 15, 16, 2, 3, 24].

As an aside, we observe that it is much simpler to obtain a non-periodic (helical) long-
range order for continuous vector spin models (compare [25, p 163, note 26]). One can
consider, for example, a rotator model with Hamiltonian

H = −
∑
i,j

J (i − j) cos(θi − θj − (i − j) × α) (1.1)

for α an irrational multiple of 2π , which by a simple change of variables is equivalent to a
ferromagnetic model if theJ (i − j) are positive. The ferromagnetic long-range order of the
transformed model is equivalent to a non-periodic long-range order in the original model.

2. The result

In [28] it was conjectured that under reasonable conditions an Ising pair interaction whose
Fourier transform has its maximum at an irrational point should show non-periodic long-
range order. It can easily be seen, as is also noticed there, that arguments implying that
the behaviour of the Fourier transform of the interaction function governs the nature of the
phase transition cannot be valid in complete generality. Here we show some results which
at least go in the right direction towards confirming this picture.

We consider the circle [0, 2π) and the irrational rotation map (over an irrational angleα):

Tαθ = θ + α. (2.1)

With any θ we associate the sequenceσα(θ) ∈ {−1, +1}Z defined byσn,α(θ) = 1 if
θ + nα (mod 2π) ∈ [− 1

2π, + 1
2π) andσn,α(θ) = −1 if θ + nα (mod 2π) ∈ [ 1

2π, 3
2π). Here

α is an irrational multiple of 2π .
Then the irrational rotation corresponds to the translation map on these sequences, and

the rotation invariant Lebesgue measure on the circle corresponds to a translation-invariant,
ergodic measureµα which is induced on the space{−1, +1}Z by the mapθ → σα(θ). It is
straightforward to compute the pair correlation functions of these measures, and to see that
they have a non-periodic but quasiperiodic long-range order. Indeed, let

µα(σ0σn) = fα(n) (2.2)

with

fα(n) = 1 −
∣∣∣∣ ((n × α) (mod 2π))

π

∣∣∣∣ (2.3)

then thefα(n) form a quasiperiodic sequence of pair correlation functions. (The Fourier
transform of these pair correlations lives on a dense set of points in the interval [0, 2π),
given by the integer multiples ofα (mod 2π).) The relation sgn(fα(n)) = sgn(cosnα)

holds.
We will apply the Israel–Bishop–Phelps theorem [1, 13], [14, chapter V],

[10, chapter 16], to conclude the existence of a similar long-range order for an appropriate
Gibbs measure on the configuration-space (space of sequences){−1, +1}Z. For the theory
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of Gibbs measures for lattice models, we refer the reader to [8, 10, 14]. Applying the
Israel–Bishop–Phelps theorem works in the same way in any dimension, for simplicity we
thus consider here the one-dimensional case only. Let us consider in the following cones
of translation-invariant interactions given by:

Cα =
{

J (n) : sgn(J (n)) = sgn(fα(n)),
∑

n

|J (n)| < ∞
}

(2.4)

such that one has formal Ising Hamiltonians of the form

H = −
∑
i,j∈Z

J (i − j)σiσj . (2.5)

The Israel–Bishop–Phelps theorem in our case reads as follows:

Theorem 2.1.For every irrationalα and everyε > 0 there exists a translation-invariant
pair interactionJε,α ∈ Cα, such that

∑
n |Jε,α(n)| 6 (ln 2)/ε, for which there exists a

translation-invariant Gibbs measureµJε,α
which satisfies

sgn(µα(σ0σn))[µJε,α
(σ0σn) − µα(σ0σn)] > −ε. (2.6)

This means that there exists a Gibbs measure with the same kind of quasiperiodic
long-range order in the two-point correlation functions as occurs inµα, while the sign
of the interaction between spins at distancen coincides with the sign of the correlation
function at distancen, at least when this correlation function is not too close to zero. For
pair interactions this puts a limit on the unavoidable frustration.The decomposition into
extremal Gibbs measures of any such aµJε,α

contains uncountably infinitely many elements
(for any extremal non-periodic Gibbs measure occurring in the decomposition its countably
many translations occur with the same weight, which thus has to be zero; as countably
many elements of measure zero still only add up to a measure zero contribution, one needs
to have uncountably infinitely many extremal elements in the decomposition).

To get some more control over the cone of interactions, which gets closer to the Fourier
transform having a maximum atα, at the cost of losing some control over the correlation
functions, we can replaceCα by its subcone

C ′
α =

{
J (n) : sgn(J (n)) = sgn(fα(n)),

∑
n

J (n)

cosnα
< ∞

}
. (2.7)

This means that in the Fourier series
∑

n J (n) cosnx, at the pointx = α not only are all
the terms positive, but theJ (n) have to be small whenever the term cosnα is small.

For the corresponding Gibbs measure for some element of the subcone we obtain the
inequality

1

cosnα

[
µJε,α

(σ0σn) − µα(σ0σn)
]

> −ε (2.8)

which still implies that non-periodic long-range order occurs.

Remark. Similarly to the case of the Fibonacci system [5], it is possible to compute the
Parisi overlap distributionp(q) of the µα. Let us recall that the overlap between two
configurationsσ 1 andσ 2 is given by

q = lim
N→∞

1

N

∑
n=1,...,N

σ 1
n σ 2

n . (2.9)
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Its distribution with respect to the product-measureµα ⊗ µα is the Parisi overlap
distribution which plays an important role in the mean-field theory of spin-glasses [17].
In our case it is given by

p(q)dq = 1
21[−1,+1]dq (2.10)

which, as one sees, is non-trivial, continuous, and is the same for eachα. This behaviour for
the overlap distribution, as well as the earlier results of [5], illustrates the point emphasised
in [19–21] that (also non-trivial) overlap-distributions in great generality are self-averaging.
Here the self-averaging property is trivially fulfilled (there is no averaging to be done), but
the overlap distribution can be computed explicitly and shown to be non-trivial.

3. Comments and conclusions

We have used the Israel–Bishop–Phelps theorem to show the occurrence of quasiperiodic
long-range order at positive temperatures for translation-invariant pair interactions of
(quasiperiodically) alternating signs. As usual the problem with applying the Israel–Bishop–
Phelps theorem is its non-constructive character. One knows that there exists an interaction
within a certain class of interactions whose Gibbs states give rise to some prescribed type
of long-range order, but one does not know this interaction precisely. However, in cases
where there is no reflection positivity available, and also no contour argument has been
found, this is essentially the only rigorous method available to us. It should be helpful for
further progress in this domain to see that a phase transition with non-periodic long-range
order (with infinitely many pure Gibbs phases) can occur for a certain type of interaction.
Compared with the earlier results of [6], the class of interactions we consider contains
physically much more realistic potentials. Moreover, our results link for the first time
the Israel–Bishop–Phelps theorem with classes of interactions whose Fourier transforms
have certain prescribed properties. Attempts to read off the behaviour of the long-range
correlation functions and the phase transition from the properties of the Fourier transform of
an interaction are of course widespread; they form the foundation of spin-wave theory. In
fact, a rigorous version of these arguments holds in the mean-field limit [22], but for models
with interactions of shorter range it is unclear under which conditions such arguments can
be justified. Our results support the validity of some of such considerations, if only in a
rather implicit fashion.

Similarly to what was observed in [5, 7, 28], we find that there is a suggestive
resemblance between the properties of a non-periodically ordered system and the presumed
properties of spin-glass models.
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